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Abstract: Arsenic (As) is semi metallic compound (metalloid). Beside the elemental form, As exists in four oxidation 

states; -3, 0, +3 and +5 and As (0) as an elemental form. Arsenic exists in environment since long back, but present 

acceleration of its exposure leads to cancer, which is increasing day by day. During recent years, several 

technologies are developed to remediate As physically and chemically from drinking water, but least effort is seen 

in case of healthy crop production in As contaminated areas. In this regard, there is a hope with bioagents as they  

can be suitable and convenient for ecological sustainability in As contaminated soils. 
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1.   INTRODUCTION 

Arsenic (As) is semi metallic compound (metalloid) existing in environment in solid gray, yellow and black color. Its 

structure consists of many interlocked ruffled, six-membered ring which is double layered but brittle and relatively low 

mohs-hardness.  As was discovered in early Bronze Age (2500 BC) but for the first time  isolated as arsenic sulfide by 

Albertus Mannus (1250). Death of Napoleon Bonaparte was suspected to be due to As poisoning. It is a carcinogenic, 

toxic heavy metalloid (Huysman and Frankenberges, 1990; Phillips, 1990). As exists in four oxidation states; -3, 0, +3 and 

+5. According to ATSDR, (1999) elemental form of As is as As (0). Solubility of arsenate (As V), arsenite (As III), 

arsenic (As 0) and arsine depends on the pH and ionic condition. Amongst all its oxidation states, As(V) is the most stable 

form (Sharma and Sohn, 2009; Zhao et al. 2010; Gupta et al. 2011). As resembles with phosphorus (P), which occupies 

the same group 15 in periodic table.   

As exists in environment since long back, but present acceleration of its exposure leads cancer which is considerably 

increasing day by day. IARC (International Agency for Research on Cancer) recognized it as a group-I carcinogenic. EU 

(European Union) directive 67/548/EEC declared As as a toxic and dangerous for the environment. Exposure of As 

induces adverse effects on human health and causing cancer. As  reaches in human body directly from water and 

indirectly from food products which are grown at As contaminated areas (Huq et al. 2006; Srivastava et al. 2013). In 

agriculture deep water irrigation accelarate As toxicity in agricultural crops and drinking water. FAO (Food and 

Agriculture Organization) declared permissible limit of As in irrigation water as 0.10 mg/l. Whereas different 

organizations set different  permissible limit of As in drinking water such as  0.01 mg/l by WHO,  10 ppb  by EPA (US), 5 

ppb by  Department of Environmental Protection New Jersay etc. as there is no average of As content global food 

products however,  WHO advisory conference of As scheduled to consider 200-300 ppb for rice and China sets 150 ppb 

As for food products in china. Under normal conditions, As concentrations in terrestrial plants are usually less than 10000 

ppb (Matschullat, 2000). During recent years, several technologies are developed to remediate As physically and 

chemically from drinking water, but least effort are seen in case of healthy crop production in As contaminated areas. In 

this regard, there is a hope with bioagents, which may be suitable and convenient for ecological sustainability in As 

contaminated soil. 
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In living bodies As present in many forms like mono methyl arsenic acid [MMA; CH3AsO (OH)2], dimethyl arsinic acid 

[DMA; (CH3)2AsOOH], tri-methyl arsineoxide [TMAO; (CH3)3AsO], arsenobetaine [AsB; (CH3)3AsþCH2COOH], 

arseno-choline (AsC), arsenosugars (AsS), arsenolipids etc. (Tangahu et al. 2011). As (III) is usually more toxic than 

As(V) (Abedin et al. 2002a and b; Schat et al. 2002) and dimethyl  arsinous acid  and mono methyl arsonous acid are 

more toxic than other related compounds (Petrick et al.  2000; Mass et al. 2001). Toxicity of As is because of its affinity 

to As (III) oxidies for thiols (
_
SH). Thiol is important in cysteine residues and act as a cofactor like lipoic acid cofactor in 

citric acid cycle. As(III) inhibits ATP production and also inhibit succinate dehydrogenase activity because of that it leads 

to inhibition of mitochondrial activity. As can compete with Phosphorus during oxidative phosphorylation and by 

inhibiting the reduction of NAD
+
 (Saha et al. 1999; Mazumder, 2005). 

2.   APPROACHES TO REMEDIATE ARSENIC CONTAMINATION 

Remediation of As from contaminated water is necessary to reduce its adverse effects on human health. Most of the 

physical and chemical tools have been applied for As remediation, from drinking water, but these are costly and less 

affordable (Mukherjee et al. 2010). However,  Many bacteria, fungi and accumulating plant have potentialiy to remediate 

the As contamination by various mechnisms (Su et al. 2010; Srivastava et al. 2011) and that could be  used as a bio-agents 

in stressful environmental condition.  

As contaminated soil is being remediated via various methods, which are physical excavation and transport for landfills, 

solvent extraction techniques, electrokinetic separation, chemical oxidation, soil stabilization/solidification (Bento et al. 

2005; Gong et al. 2005; Collins et al. 2009). Now a days, bioremediation technique received much attention, because it 

enhances the establishment of vegetation at reasonable cost along with sustainability. Phytoremediation (Phytoextraction, 

Phytostabilization and Rhizofiltration) of contaminated soils has been widely accepted as a cost-effective and 

environmentally friendly (Yu et al. 2003) tool for As remediation.  

2.1 Physical approaches for Arsenic remediation 

In the physical approaches, As contaminated and non-contaminated soils are mixed together and washed with sulfuric 

acid, nitric acid, phosphoric acid, and hydrogen bromide. This leads to As dilution at an accepetable level (Mahimairaja et 

al. 2005). However, application of physical approach at large scale is not possible as it uneconomical and  non eco-

friendly. (Mahimairaja et al. 2005).  

Treatment of As residue by cow dung, reduces As into gaseous (AsH3) and release it into atmosphere (Mudgal, 2001). As 

a pre-landfill waste treatment technology, stabilisation/solidification processes cab be done, which make the As waste safe 

for disposal (Conner, 1990). The process involves mixing the waste, either in the form of sludge, liquid or solid into a 

cementitious binder system. Stabilisation/solidification is most suitable for treating inorganic wastes, as these are 

considered more compatible with the cementitious binders. Use of Stabilisation/solidification technologies inhibit 

leaching of hazardous components by reducing waste/leachant contact and by forming a stable pH environment (Sullivan 

et al. 2010). Mixing of As sludge into construction materials is common in urban areas of South Asian countries e.g. 

Bangladesh and India (Sanchez et al. 2000). Calcium silicate hydrate (C–S–H) matrix co-precipitation of As ions 

homogeneously dispersed with Ca and Si compounds present in the cement (Halim et al. 2004). Portland cement with 

lime is appropriate for treating waste from sorptive filters but not oxidised precipitative sludges because of high pH 

(Sullivan et al 2010). On applying soil flushing in the field, efficiency can vary from 0% to almost 100% and use of more 

complex methods with polymer injection leads to higher efficiencies (Atteia et al. 2013; Lin et al. 2014). 

In As removal technology an important aspect is membrane technology that depends on selective pores and driven force. 

This technology is efficient to reduce As concentration of less than 50 mg/l. Microfiltration (MF), ultrafiltration (UF) and 

nanofiltration (NF) are high pressure techniques efficient in removal of dissolved As from the contaminated water (Figoli 

et al. 2010).  Pore size in UF is 10-1000 Å whereas in NF size of membrane 1 nm and  molecular weight of NF is 

typically less than 1000 Da. In NF membrane have slightly charged surface and charge intraction plays a important role in 

separation of molecule (Waypa et al. 1997).  

Reverse Osmosis (RO) membrane contains extremely small pores size  i.e., <0.001 (Schneiter and Middlebrook 1983). 

Farword Osmosis (FO) is another membrane process that used in treatment plants for industrial waste (Cath et al.2006), 

where water is filtered through osmotic pressure difference and driven force.  
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2.2 Chemical Approaches for Arsenic remediation 

Remediation of As through Chemical approaches are carried out by various methods, like oxidation, electrokinetics, iron- 

exchang, coagulation flocculation, Adsorption etc. Oxidation of more toxic As(III) to less toxic As(V) and after oxidation 

As(V) is precipitated (Masscheleyn et al. 1991). In this process many chemical oxidants like chlorine, chlorine dioxide, 

ozone, hydrogen peroxide, chloroamine, permagnate and ferrate are utilized (Johnston et al. 2001; Lee et al. 2003; 

Vasudevan et al. 2006; Sharma et al. 2007; Mondal et al. 2013). Photochemical oxidation uses UV irradiation in presence 

of oxygen, which helps to generate hydroxyl radicals through the photolysis of FeOH
2+ 

(Yoon and Lee, 2005). In situ 

oxidation also helps to reduce As content in ground water (Sen Gupta et al. 2009). Coagulant such as Alum, ferric oxide, 

sulfate are efficient in removal of As from water by coagulation flocculation process (Mondal et al. 2006; Singh et al. 

2014). In electrocoagulation application of iron and effluent water generates loosely clumped mass of fine particles (Van 

Genuchten et al. 2012). ECAR (Electrocoagulation-chemical Arsenic Remediation) model is based on electrocoagulation 

principle (Amrose et al. 2013). Iron Based Sorbents (IBS) is an emerging treatment technique for As remediation. In this 

adsorption principle hydroxyl groups are present as absorbent (Selvin et al. 2000). This trend shifts to Zero valent iron 

method over the last decade because of non-toxic, abundant, cheap and easily available resource. In Zero valent iron , the 

oxygenated water comes in contact with Z(VI), Fe(II) and Fe(III) hydroxides produces that oxidies As and help in 

removal (Farrel et al. 2011; Leupin and Hug, 2005). In recent trend wide variety of absorbent like activated carbon fly ash 

and  aluminium loaded coral limestone (Huang and Fu 1984; Ohki et al.1996; Diamadopulos et al. 1993), modified fly 

ash, nanoparticles or hydrous iron oxide (Goswani and Das, 2000; Sylvester et al. 2007) are used for the removal of As. 

Electrokinectics (EK) remediation is also a technique based on electro-osmosis, electromigration and electrophoresis 

(Virkutyte et al. 2002). During this remediation process, various chemicals such as chelating agent, surfactant and 

gasoline (Bhatacharya, 1996) are used. 

2.3 Biological Approaches for Arsenic remediation 

Remediation of heavy metals through biological means is termed as bioremediation. This includes flora and fauna utilized 

in remediation process. The process is as old as 100 years when first biological plant established in 1891 at Sussex, UK 

(NABIR primer,2003), however, its history began from back 6000 BC (NABIR Primer 2003). Bioremediation technology 

became more popular because of its sustainability with ecology and environment. However, there are many physical and 

chemical techniques, but these are not much efficient,  costly and hard to apply at a large scale. Principle involved in the 

process of bioremediation is to change in redox reactions, increasing/decreasing the solubility, pH changing and 

adsorption or uptake of substance through complex enzymatic reaction by living organisms. Smith et al. (1994) reported 

that many microbes reduces As content for obtaining their energy by oxidizing various fuel while reducing Arsenate to 

Arsenite under oxidative environmental conditions.  In some cases As act as a source of electron donar too. It has been 

reported that marine polychaete species like Australonuphis parateres could accumulate As up to 2739 mg/kg dry weight 

(Kaise et al. 1997; Waring and Maher, 2005).  Takeuchi et al. (2007) reported that Marinomonas communis cells 

accumulated up to 2290 mg/kg of dry weight. As hyperaccumulation up to 22,630 mg/kg was recorded in a fern Pteris 

vittata (Ma et al. 2001). Biosorption of As by microbial biomass may be helpful to remove As from groundwater. 

Bioaccumulation method found in certain plants and micro-organisms (for example, Gallinonella furruginea, Leptothrix 

ochracea) help in remediation of metal concentration (Katsoyiannis and Zouboulis 2004; Singh et al. 2014). Bioleaching 

process also used in remediation of As contaminated soils (Wang S and Zhao X, 2009). As transformation in environment 

is mostly biotic (Meng et al. 2003). There are  different As  mobility forms  such as [methyl As (III)>>methyl As 

(V)>As(III)>As(V)] (Lafferty and Loeppert, 2005; Abedin et al. 2002).  Thermus aquaticus and Thermus thermophiles 

have been shown to 100 times more oxidation than abiotic oxidation rate (Gihring et al. 2001).  

2.3.1 Bioaccumulation of Arsenic 

Bioaccumulation refers to accumulation of As inside the cell of organism (Joshi et al. 2009). These organisms may be 

bacteria, fungi, algae and plants. As can enter and accumulate through pores of cell membrane and stored in vacuole and 

cytoplasm (Xie et al. 2013). In microbes As operon peptide with thiol group play role in binding of As and detoxification 

by increase tolerancy. Ars R gene has high affinity towards As(III) (Kostal et al. 2004). As(V) uptake takes place through 

phosphate transporters (Rosen, 2002). Bacillus sp. strain DJ-1 accumulates As upto 9.8 mg/g of dry weight (Joshi et al. 

2009). In an experiment Adeyemi, (2009) reported that Trameter versicolor accumulate As from arsenic sulfide amended 

agar medium. Algal biomass such as, Scytonema also have the ablility to remove As from water (Prasad et al. 2006). 
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2.3.2 Biosorption of Arsenic 

Biosorption is a retention of metal on the cell surface by cationic elements (Gadd, 2009). Hydroxyl, amino and amide 

groups (present in prokaryotic cell membrane) and pH are responsible for sorption of As (Giri et al. 2013; Prasad, 2011). 

Bacteria, like, Bacillus subtilis (Hossain and Anantharaman, 2006), Bacillus cereus (Giri et al. 2013)  and many fungus 

like Penicillium chrysogenum , P. purpurogenum and Aspergillus niger (Loukidou et al. 2003; Pokharel and 

Viraraghavan, 2006)showed sorption activity with As(III), As(V) and MMA (monomethylarsonic acid).  15
0
 and 20

0
 to 

40
0
 temperature favor sorption in B. cerus and A. ferrooxidance BY-3. (Giri et al. 2013; Yan et al. 2010). Whereas, 

increase temperature 30
0
 to 60

0
 C decrease sorption in Bacillus cereus W2 (Miyatake and Hayashi, 2011). Physical or 

chemical pretreatments can improve the biosorption (Wang and Zhao, 2009).  Recent findings indicate that presence of 

nanopartical amorphous Fe(III) may increases As(III) and As(V) sorption (Yang et al. 2012). 

Byproduct of Penicillium chrysogenum pretreated with surfactants hexadecyl trimethylammonium bromide and 

dodecylamine can improve the biosorption and at pH 3 (Loukidou et al. 2003). Tea fungus, a waste product is also able to 

remove As from groundwater (Murugesan et al. 2006). Aspergillus niger coated with iron oxide showed efficiency to 

remove As from water (Pokharel and Viraraghavan, 2006; 2008). 

2.3.3 Adsorption of Arsenic 

Mineral weathering microbes shows adsorption of metal on the surface of cell (Dong, 2010). Haque et al. (2007) reported 

that Sorghum biomass in adsorbing As from water.  The equilibrium time for As adsorption in the biomass was 12 hr. The 

maximum removal of arsenic was found at an initial pH value of 5.0 and  maximum adsorption capacity for the biomass 

was 2.4–2.8 mg/g of As. Fungal biomass of Penicillium purpurogenum showed maximum adsorbance in noncompetitive 

conditions (Say et al. 2003) and Mn oxide-depositing fungus, strain KR21-2, Mn phase shows a transiently high 

accumulation of As(V) during the early stage of manganese oxide formation (Tani et al. 2004).  

2.3.4 Oxidation of Arsenic 

Many Chemolithoautotrophic microbes derived energy by oxidation of As(III) to As(V) aerobically, in this process 

As(III) oxidizers couple the oxidation of As(III) (e.g., electron donor) to the reduction of either oxygen or nitrate and use 

the energy derived to fix CO2 into organic cellular material to achieve growth (Wang Z. and  Zhao X, 2009). Arsenite and 

arsenate are normally occurs in waters. As(III) is oxidize to As(V) for prior to its removal (Inskeep et al. 2004; Sun 2008). 

Anaerobic As (III) oxidation applied in contaminated soil treatment in waste industries where inorganic carbon added as 

source and nitrate as electron acceptor. (Rhine et al. 2006). 

2.3.5 Reduction of Arsenic 

In anaerobic reduction, microbes utilizeses As(V) through respiratory reduction as terminal electron acceptor (Lloyd and 

Oremland 2006; Mukhopadhyay et al. 2002; Stolz et al. 2002, 2006). Reduction of As indicate the increases As mobility, 

detoxification and resistance (Silver and Phung, 2005). In microbes, cytoplasmic As(V) reductase, (ArsC)  is protein of 

small-molecular mass (13 to 16 kD) that mediates the reduction of As(V) to As(III) and detoxify by transported outside of 

the cell by ArsAB As chemiosmotic efflux system ( Silver and Phung, 2005; Macur et al. 2001).  Another detoxify 

mechanism are ATPase membrane system or sequestered in intracellular compartments, either as free As(III) or as 

conjugates with glutathione or other thiols As(V) reduction under aerobic conditions (Macur et al. 2001). Many microbes 

like Sulfurospirillum barnesii, Bacillus arsenicoselenatis, Bacillus selenitireducens, Sulfurospirillum arsenophilum, 

Desulfotomaculum auripigmentum, Chrysiogenes arsenatis and Desulfomicrobium strain Ben-RB (Macy et al. 2000; 

Newman et al. 1998; Stolz and Oremland,1999) and hyperthermophilic archaea (Pyrobaculum arsenaticum and 

Pyrobaculum aerophilum) (Huber et al. 2000) utilizes As(V) as terminal electron acceptor. 

2.3.6 Methylation of Arsenic 

Methylation of As allows the transformation of aqueous- or solid-associated inorganic As into gaseous arsines. Gaseous 

arsines are highly mobile in comparison to aqueous As and aqueous trivalent and pentavalent methyl As was considered 

mobilization because of lower adsorption affinity (Mukai et al. 1986; Huang and Matzner, 2006; Lafferty and Loeppert, 

2005). Lower value of redox potentials (i.e. reducing conditions) promote the production and mobilisation of As (Frohne 

et al. 2011). Some methanogenic bacteria under anaerobic conditions proceeds to dimethylation of As, which is stable in 

the absence of oxygen but can be rapidly oxidized under oxygenated conditions (Takamatsu et al. 1982). However, As 
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methylation was demonstrated by both aerobic and anaerobic microorganisms (Kuehnelt and Goessler, 2003).  There are 

many enzymes present in microbial system which are involved in methylation such as, As(V) reductase, 

monomethylarsonic acid reductase, As(III) methyltransferase and monomethylarsonous acid methyltransferase (Wu, 

2005). Extracellularly methylation was as follows: inorganic As→monomethylarsonic acid→dimethylarsinic 

acid→trimethylarsine oxide in microbes like Apiotrichum humicola and Scopulariopsis brevicaulis whereas in 

Trichoderma asperellum, Penicillium janthinellum and Fusarium oxysporum intracellular methylation (Su et al. 2012). 

Methylation of As in biological system term as biomethylation. It may be inorganic to organic forms like MMA, DMA or 

TMAO, MMA (III), DMA(III) or some time gaseous arsines (Takamatsu et al. 1982; Sanders, 1979; Oremland and Stolz, 

2003; Jia et al. 2013).   

2.3.7 Demethylation of Arsenic 

In natural conditions, microbial As demethylation occurs under both aerobic as well as anaerobic conditions (Huang et al. 

2007). Demethylation of As is apparently not suitable for the purpose of remediation. There is comparatively less number 

of microbes involved in demethylation (Millward et al. 1996; Sierra-Alvarez et al. 2006). In an experiment of mixed 

culture of Burkholderia and Streptomyces species could perform the complete process of demethylation by two-step 

process (Yoshinaga et al. 2011). Mycobacterium neoaurum was found to demethylate both monomethylarsonic acid and 

monomethylarsonous acid (Lehr et al. 2003) and degradation of aqueous methylated As usually occurs via.  

demethylation but gaseous As demethylation is still an open question (Mestrot et al. 2011). 

2.3.8 Bioleaching of Arsenic 

As contaminated soil reclamation by the transformation ability of microbes, from solid to soluble extractable forms is 

called bioleaching (Deng and Liao, 2002; Wiertz et al. 2006).  Transformation ability of some microbes for conversion of 

As in extractable forms, they may help to detoxify As toxicity. Acidophilic Fe oxidation microorganism usually prefered 

As containing sulphide minerals, e.g. arsenopyrite (FeAsS), enargite (Cu3AsS4) and realgar (As4S4) (Acevedo et al. 

1998). Conversion of   ferrous to ferric ions with the subsequent chemical oxidation of sulphides by Fe3+ help in As 

bioleaching. (Marquez et al. 2012).  Secondary mineral precipitates such as jarosite [KFe3(OH)6(SO4)2], magnetite 

(Fe3O4), ferric arsenate [Fe2(AsO4)3], scorodite (FeAsO4⋅2H2O), schwertmannite [Fe8O8(OH)6(SO4)· nH2O], ferric 

hydroxide [Fe(OH)3] and ferric phosphate [Fe2(PO4)3] may suppress by bioleached As (Acevedo et al. 1998; Chen et al. 

2011; Corkhill et al. 2008; Duquesne et al. 2003).  Bayard et al. (2006) experimentally evaluated the As mobilization and 

found that upto 35% of the As was mobilized over 84 days with sulfur at 30
0
 C under very acidic (pH <1) and oxidative 

conditions. Dopson and Lindstrom, (1999) reported that Thabacillus caldus may support bioleaching. Deng and Liao 

(2002) reported that mixed cultures containing Thiobacillus ferrooxidans and Lepptospirillum ferroxidans could extract 

As from a complex flotation concentrate up to 95% was bioleached from the concentrate after 6 days under optimal 

conditions. The introduction of Fe(II)  increased As leaching in Acidithiobacillus ferrooxidants but showed insignificant 

effect in  Acidithiobacillus thiooxidants (Zhang et al. 2007). In Desulfuromonas palmitatis As removal increased up to 

90% in the presence of an iron reducing microorganism (Vaxevanidou et al. 2008). 

2.3.9 Biostimulation of Arsenic  

Biostimulation is to stimulate existing bacteria to be capable or become more capable for  bioremediation. This can be 

done by addition of various forms of rate limiting nutrients and electron acceptors. In an experiment, element sulfur added 

as an energy substrate in aerobic conditions to stimulate Arsenic bioleaching. (Seidel et al. 2002; Bayard et al. 2006). 

Carbon sources also act as energy donor and can be use for  stimulate bacteria growth promotion in  As bioleaching from 

soils (Mc Lean et al. 2006). Chatain et al. (2005) found that the anaerobic As bioleaching from soils by indigenous 

bacteria could be increased by 28-folds through addition of carbon sources. Chen et al. (2017) reported that biostimulation 

with 5% rice straw amendment and bioaugmentation with genetic engineered Pseudomonas putida KT2440 enhanced 

efficiency of As volatilization (483.2 μg/kg/year). 

2.3.10 Biominiralization of Arsenic 

Living microorganisms involved in the hardening or stiffening of the mineralized materials and  there are more than 300 

As minerals known to occur in nature (Drahota and Filippi, 2009). Some biogenic minerals like iron, mangnese and 

sulphide can immobilise As in solution such as precipitation of calcium arsenates [Ca5H2(AsO4)4⋅cH2O] in Ca-rich 

environments is example of As mineralization (Martinez-Villegas et al. 2013). It has been a common practice to stabilize 
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As wastes as metal arsenate compounds (Bothe and Brown, 1999; McNeill and Edwards, 1997). Freire et al. (2014) 

investigated that the pH would also impact on the mineralogical composition of the arsenic-sulfide minerals and As(V) 

and SO4
2−

 reducing bacteria can stimulate the immobilization of As ground waters by the process of mineralization. 

2.3.11 Biofilm formation for Arsenic 

Microorganisms attach and grow on a surface irreversibly and produce extracellular polymers that facilitate attachment 

and matrix formation, resulting to growth rate and gene transcription (Donlan, 2001) and 99% of all microorganisms can 

form biofilms (Costerton et al. 1987). Biofilm formation may role  in As biogeochemistry was evidenced by the potential 

enrichment of As in biofilm  and As in rock biofilm reached up to 60 mg kg
−1

 (dry weight) (Drewniak et al. 2008). In As 

rich environment microbes might stimulates oxidation and reduction, redox transformation and As methylation (Huang, 

2014). Mallick Ivy et al.  (2017) reported that As-resistant halophilic bacterial strains Kocuria flava AB402 and Bacillus 

vietnamensis AB403 from mangrove rhizosphere of Sundarban, both isolates, AB402 and AB403, can tolerate 35 mM and 

20 mM of arsenite, respectively. 

2.3.12 Biovoltlization of Arsenic 

Volatile As-species generated during biomethylation through process of biovolatlization. biovolatilization might be 

developed as an ex-situ method for As removal under controlled conditions ( Wang and Zhao, 2009). Many filamentous 

fungi and some bacteria involve in such processes. Visoottiviseth and Panviroj (2001) Reported that Penicillium sp. were 

capable of volatilizing 25.8–43.9 mg of As during a 5-day cultivation period. Edvantoro et al. (2004) found that 

augmenting contaminated soils (1390 mg As/kg) with methylating fungi (Penicillium sp. and Ulpcladium sp.) 

significantly increased the As volatilization rates (up to eight-fold increase). Cernansky et al. (2009) found in his 

comperative study that Neosartorya fischeri is more efficient in comparison to Aspergillus clavatus and A. niger whereas 

A. niger  is least capable out of three species. Genetic engineered (GE) Pseudomonas putida KT2440 bearing arsM gene 

exhibited high capacity of As volatilization (Chen et al. 2013, 2014) and with the application of rice straw (RS) and GE P. 

putida, arsine fluxes were also the highest in Dayu soil (483.2 μg/kg/year), followed by Zhuzhou soil (79.3 μg/kg/year) 

and Qiyang soil (29.3 μg/ kg/year) and the combination of RS + GE P. putida significantly enhanced the As flux in 

different soils except Qiyang soil, which is lower than RS amendment alone, (Chen et al. 2017). 

2.4 Phytoremedial Approches for Arsenic Remediation 

Phytoremediation is eco-friendly approach to remediate As contamination from soils and water bodies, many of land and 

macroaqutic plants are efficiently perform this action (Favas et al. 2014). Phytoremediation of As can be done through the 

process of phytostablization, phytoextraction and phytovolatilization. As tolerancy and accumulation is common type 

which included compartmentation and translocation of As in plants. (Zhu. and Rosen, 2009). Plants accumulate As in 

their root, shoot biomass and attend significant attention for phytoextraction (Barbafieri et al. 2013). Several study 

concluded that the plant-associated growth-promoting bacteria (PGPB) contribute in phytoremediation and the application 

of resistant-accumulatory microbes with Plants has been accelerate cleanup of metal contaminated soils (He et al. 2007; 

Glick, 2010). 

2.4.1 Phytostablization of Arsenic 

Phytostablization is the mobility of heavy metal into immobilization form in order to minimize bulk erosion, leaching and 

transport of heavy metals (Singh 2008, Porter and Peterson, 1975).  In the under ground parts, phytostablization reduces 

bioavailability and mobility into ground water and food chain (Erakhrumen, 2007). Root exudates also stimulate 

microbial activity and releasing redox enzymes shows the ability to stabilization of heavy metals and converts them into 

complex immobilizing forms in rhizosphere (Wuana and  Okieimen, 2011; Rocovich and West, 1975; Benson et al. 1981) 

and improve biological and chemical characteristics of contaminated soil (Arienzo et al. 2004). Some acids like acetic, 

butyric, citric, fumaric, lactic, malic, malonic, oxalic, propionic, tartaric, succinic acids etc. shows effects on the dynamics 

of metal(loid)s in soils via., acidification, chelation, complexation, precipitation, redox reactions and microbial activity 

(Bolan et al. 2011). 

2.4.2 Phytoaccumulation of Arsenic 

Metal accumulating plants are able to accumulate heavy metals from contaminated soils and water and accumulated 

metals can be extracted and translocate in different storage parts (Fitz and Wenzel, 2002). As hyperaccumulator plants are 
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mainly fern species and first As accumulation discovered in Pteris vittata (Fitz and Wenzel et al. 2002) and followed by 

Pityrogramma calomelanos (Francesconi et al. 2002) but phytoextraction of As has not yet been applied (Sun et al. 2001). 

These hyperaccumulator plants are  actively take up and translocate heavy metals into above-ground tissues but in tolerant 

plant species tend to restrict soil–root and root–shoot transfers, and therefore have much less accumulation in biomass.  

2.4.3 Phytovolatilization of Arsenic 

Phytovolatilization is process to convert  non volatile As to volatile As-species in plants and emits to environment (Rugh 

et al. 1996). There is two way for first direct in which volatilization of the compound from the stem/trunk and leaves 

(Guenther et al. 1994) and indirect is the increase in volatile contaminant flux from the subsurface resulting from plant 

root activities (Jasechko et al. 2014). Direct volatization differ from transpiration that produce moderately hydrophobic, 

able to diffuse across hydrophobic barriers such as cutin in the epidermis or suberin in woody dermal tissues (Guenther et 

al. 1994).  

 

 

Figure 1: Diagrammatic representation of   Arsenic uptake, metabolism of phytoaccumulation and phytovolatilization in As-

tolerant plants (After Zhu & Rosen, 2009). 

2.4.4 Mechanism of Phytoremediation of Arsenic  

Phytoremediation of As depend on its bioavailability and tolerancy of plant. Complexity of As tolerance and 

accumulation in plant is managed by some functional gene and their expression (Zhu and Rosen, 2009). Uptake of As(V) 

and As(III) by phosphate and aquaporin transport channel pathway are utilized (Catarecha et al. 2007; Wu et al. 2011). 

Aquaporin also provide channel for other methylated As species in different plant parts (Ma et al. 2008; Li et al. 2009a, 

b). However Lsi 2 transporter found only in cells of root, responsible for As translocation to xylem (Yamaj and Ma, 

2011).  Arsenate reductase convert As(V) to As(III) in cytosol of root and shoot with utilization energy by conversion of 

GSH into GSSH.  These As(III) accumulated in vacuole by two way,first directly cross the tonoplast membrane (Zhu and 

Rosen., 2009) and other as form of  As-thiol which form the rection of  phytochelatin synthatase (PCS) and utilize As-

thiol transporter to accumulate in vacuole (Guo et  al. 2008). Remaining As reach upto shoot parts by vascular 

translocation like xylem. In aerial region volatilized form of As forms like monomethyl arsonicacid (MMA), 

dimethylarsinic acid (DMA), trimethylarsineoxide (TMA) in presence of arsM [As(III)-S–adenocylmethionine 

methyltransferase] and these forms volatilizes to environment in gaseous forms (Qin et al. 2006). Nahar et al. (2017) 

cloned At ACR2 gene (arsenic reductase 2) of Arabidopsis thaliana and proof by experiment its role in As reduction in 

plant cell. 
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3.   CONCLUSION 

There are many bioremediation mechanisms applied to remediate As toxicity from contaminated water and soils. They 

transform more toxic to less toxic forms sustainabally in minimum cost. Conversion and release of volatile As species into 

environment is very safe due to dilution effect. Isolation of indigenous microbes from contaminated sites shows more 

efficiency to bioaccumulation, bioabsorption and tolerancy. Many indigenous filamentous fungi shows more efficiency 

for volatilization of As. Recent study revealed that application of microbes with accumulator plant shows increased As 

accumulation in different parts of plant. 

Efficient microbes have hope to cost effective remediation in accelerating As contamination with sustainable approach. 
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